12. Calculation of grand potential using thermodynamic integration

12.1. Theoretical backgrounds

Thermodynamic integration

See [TI].

[TI]

A van de Walle and M Asta, Modell. Simul. Mater. Sci. Eng. 10, 521 (2002).

\beta_1\phi(\beta_1,\mu_1) = \beta_0\phi(\beta_0,\mu_0) + \int_{(\beta_0,\mu_0)}^{(\beta_1,\mu_1)} (E+\mu x, \beta x )d(\beta,\mu)

Low-temperature expansion for grand potential

See [LTE].

[LTE]

A F Kohan, P D Tepesch, G Ceder and C Wolverton, Comput. Mater. Sci. 9, 389 (1998).

12.2. ti

  • Calculating grand potential using semi-grand canonical MC and thermodynamic integration.

Input files

Output

  • Free energy

  • Grand potential

12.3. lte

  • Estimating grand potential at a temperature and a chemical potential using the low temperature expansion.

  • Available only for binary systems.

Input files

Output

  • Grand potential

12.4. TI.in

12.4.1. INITPOT tag

Value of grand-potential at the initial point of the path. When the temperature of the initial point of the path is 0 K, the grand potential at a finite temperature evaluated using the low-temperature expansion should be used. The initial point of the path should be set to the finite temperature.

  • Default : 0

  • Example : INITPOT = -0.016338475

12.5. LTE.in

Calculating the grand potential at T=100K and mu=0.0 using the low temperature expansion around T=0. The size of the stable structure at T=0 and mu=0.0 is the same as the size of the 2x2x2 expansion of UPOSCAR. The stable structure at T=0 and mu=0.0 is specified by POSCAR.

TEMP = 100
MU = 0.00
ISUB = 1
SPIN = 1 -1
NAMEPOT = Mg Zn
NUCELL = 4 4 4
NUCELLPOSCAR = 2 2 2

12.5.1. TEMP tag

Temperature for the low temperature expansion.

  • Default : none

  • Example : TEMP = 10

12.5.2. MU tag

Chemical potential for the low temperature expansion.

  • Default : none

  • Example : MU = 0.20

12.5.3. NUCELL tag

Low temperature expansion is performed using a supercell constructed by the NUCELL expansion of the unit cell. The grand potential calculated using the low temperature expansion converges as the supercell size increases.

  • Default : none

  • Example : NUCELL = 4 4 4

12.5.4. ISUB tag

Sublattice indexes for performing the CE. The CE is performed on ISUBth lattice sites of UPOSCAR (line 6).

  • Default : 1

  • Example : ISUB = 1 3

12.5.5. NUCELLPOSCAR tag

Number of unit cells included in POSCAR (initial structure).

  • Default : none

  • Example : NUCELLPOSCAR = 2 1 1

12.5.6. NAMEPOT tag, SPIN tag

Atom names and spin values for the atom names. Do not set spin values for atoms which are not used for the CE.

  • Default : none

  • Example : NAMEPOT = Mg Zn O

  • Example : SPIN = 1 -1

In the above example, spin values for Mg and Zn are 1 and -1, respectively.